China Hot selling High quality Timing Belt Guide Pulley Tensioner Pulley  for  CITROEN  XSARA Break (N2) 1.4 i   OEM  957726 manufacturer

Product Description

MIC NO OEM.NO APPLICATION YEAR PHOTO
TB34PG9301 957726
082990
9642929880
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.1 i (MAHDZ, MBHDZ, MBHFX)        
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 bivalent        
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 i (MBKFX, MBKFW)        
CITROEN  BERLINGO / BERLINGO FIRST Box (M_) 1.4 i bivalent (MBKFW)        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.1 i (MFHDZ, MFHFX)        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 bivalent        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i (MFKFX, MFKFW, GJKFWB, GJKFWC, GFKFWC)        
CITROEN  BERLINGO / BERLINGO FIRST MPV (MF_, GJK_, GFK_) 1.4 i bivalent (MFKFW)        
CITROEN  C2 (JM_) 1.1        
CITROEN  C2 (JM_) 1.4        
CITROEN  C3 I (FC_, FN_) 1.1 i        
CITROEN  C3 I (FC_, FN_) 1.4 i        
CITROEN  C3 I (FC_, FN_) 1.4 i Bivalent        
CITROEN  C3 II (SC_) 1.1 i        
CITROEN  C3 II (SC_) 1.4        
CITROEN  C3 Pluriel (HB_) 1.4        
CITROEN  NEMO Box (AA_) 1.4        
CITROEN  NEMO Estate 1.4        
CITROEN  SAXO (S0, S1) 1.1 X,SX        
CITROEN  XSARA (N1) 1.4 i        
CITROEN  XSARA Break (N2) 1.4 i        
CITROEN  XSARA Coupe (N0) 1.4 i        
FIAT  FIORINO Box Body/Estate (225_) 1.4 (225BXA1A, 225BXF1A)        
FIAT  QUBO (225_) 1.4 (225AXA1A)        
PEUGEOT  1007 (KM_) 1.4        
PEUGEOT  106 II (1A_, 1C_) 1.1 i        
PEUGEOT  206 Hatchback (2A/C) 1.1        
PEUGEOT  206 Hatchback (2A/C) 1.1 i        
PEUGEOT  206 Hatchback (2A/C) 1.4 i        
PEUGEOT  206 Hatchback (2A/C) 1.4 LPG        
PEUGEOT  206 Saloon 1.4        
PEUGEOT  206 SW (2E/K) 1.1        
PEUGEOT  206 SW (2E/K) 1.4        
PEUGEOT  206+ (2L_, 2M_) 1.1        
PEUGEOT  206+ (2L_, 2M_) 1.4 i        
PEUGEOT  207 (WA_, WC_) 1.4        
PEUGEOT  207 SW (WK_) 1.4        
PEUGEOT  306 (7B, N3, N5) 1.1        
PEUGEOT  306 (7B, N3, N5) 1.4 SL        
PEUGEOT  306 Break (7E, N3, N5) 1.4        
PEUGEOT  306 Hatchback (7A, 7C, N3, N5) 1.1        
PEUGEOT  307 (3A/C) 1.4        
PEUGEOT  BIPPER (AA_) 1.4        
PEUGEOT  BIPPER Tepee 1.4        
PEUGEOT  PARTNER Box (5_, G_) 1.1        
PEUGEOT  PARTNER Box (5_, G_) 1.4        
PEUGEOT  PARTNER Box (5_, G_) 1.4 BiFuel        
PEUGEOT  PARTNER Combispace (5_, G_) 1.1        
PEUGEOT  PARTNER Combispace (5_, G_) 1.4
1996-2008
2002-2011
1996-2011
2003-2005
1996-2008
2002-2011
1996-2011
2003-2008
2003-2012
2003-2009
2002-
2002-2571
2002-
2009-2013
2009-2016
2003-
2008-
2009-
1996-2003
1997-2005
1997-2005
1998-2005
2007-
2008-
2005-
1996-2004
1998-2000
1998-2007
1998-2012
2006-2007
2007-
2002-
2002-2007
2009-2013
2009-2013
2006-2013
2007-2012
1994-2001
1994-2001
1997-2002
1993-2001
2000-2003
2008-
2008-
1996-2005
1996-2015
2003-2006
1996-2002
1996-2015

  

 

 

After-sales Service: Online Technical Support
Warranty: One year
Car Make: CITROEN
Car Model: XSARA Break (N2) 1.4 i
Sample: Available
Application: XSARA Break (N2) 1.4 i
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pulley

Can you explain the concept of “efficiency” in pulley systems?

In pulley systems, efficiency refers to the ratio of output work or power to the input work or power, taking into account any losses or inefficiencies in the system. It represents how effectively the pulley system converts the input energy into useful output energy.

The efficiency of a pulley system can be affected by various factors, including friction, mechanical losses, and the design and condition of the pulleys and ropes. Here are some key points to understand about efficiency in pulley systems:

1. Mechanical Advantage and Efficiency: Pulley systems can provide a mechanical advantage by reducing the effort force required to lift a load. However, it’s important to note that while a higher mechanical advantage generally means less effort is needed, it may also result in lower efficiency. This is because as the mechanical advantage increases, the system may experience higher frictional losses and other inefficiencies.

2. Friction and Efficiency: Friction plays a significant role in the efficiency of pulley systems. The interaction between the pulley wheels and the ropes or belts can result in frictional losses, which reduce the overall efficiency of the system. Friction can be minimized by using pulleys with low-friction bearings or by lubricating the contact surfaces.

3. Rope or Belt Material: The choice of rope or belt material can impact the efficiency of a pulley system. Different materials have varying coefficients of friction, flexibility, and durability, which can affect the overall efficiency. For example, using a rope or belt with low friction and high strength can help reduce energy losses and improve efficiency.

4. Pulley Design and Condition: The design and condition of the pulleys also influence efficiency. Pulleys should be properly aligned, have smooth surfaces, and be free from damage or wear. Misaligned or worn pulleys can increase friction and decrease efficiency.

5. System Load: The efficiency of a pulley system can vary based on the magnitude of the load being lifted or moved. Higher loads can result in increased friction and mechanical losses, leading to lower efficiency.

Efficiency is typically expressed as a percentage, with 100% representing a perfectly efficient system where all the input energy is converted into useful output energy. In real-world pulley systems, efficiency is often less than 100% due to various factors, including friction, heat generation, and other losses.

It’s important to consider efficiency when designing or evaluating pulley systems. Higher efficiency means a more effective use of input energy, reduced energy waste, and improved overall performance.

pulley

Can pulleys be part of renewable energy systems like wind turbines?

Yes, pulleys can indeed be part of renewable energy systems like wind turbines. While wind turbines primarily rely on the force of the wind to generate electricity, pulleys are used in various components to facilitate the efficient conversion of wind energy into electrical power. Here’s how pulleys can be incorporated into wind turbines:

1. Rotor and Blade Pitch Control:

Pulleys are utilized in the rotor and blade pitch control mechanism of wind turbines. The rotor consists of multiple blades that capture the wind’s energy and convert it into rotational motion. To optimize the turbine’s performance, the pitch angle of the blades needs to be adjusted based on wind conditions. Pulleys and cables are employed to control the pitch angle, allowing the blades to be positioned at the optimal angle to maximize power output. The pulley system enables precise and synchronized blade adjustment, ensuring efficient wind capture.

2. Generator System:

In wind turbines, pulleys are also utilized in the generator system. The rotational motion of the turbine’s rotor is transferred to the generator through a series of mechanical components, including pulleys and belts or gears. The pulleys help to increase or decrease the rotational speed and torque as needed to match the generator’s requirements. This mechanical advantage provided by the pulleys ensures that the generator operates at its optimal speed, enhancing the efficiency of electricity generation.

3. Lifting and Maintenance Systems:

Pulleys are often incorporated into the lifting and maintenance systems of wind turbines. Wind turbine components, such as the nacelle (housing the generator and other equipment) and the rotor blades, are large and heavy, requiring periodic inspection, repair, and replacement. Pulley systems are employed to lift and lower these components during maintenance activities. The pulleys, along with cables and hoists, allow for controlled and safe handling of the heavy parts, enabling efficient maintenance and minimizing downtime.

4. Access Systems:

In larger wind turbines, pulleys are utilized in access systems that provide safe and efficient access to various parts of the turbine, including the nacelle and the rotor blades. Climbing systems or platforms equipped with pulleys allow technicians to ascend or descend the turbine structure, providing easy access for inspection, maintenance, and repairs. Pulleys facilitate the movement of personnel and equipment, ensuring the safety and efficiency of wind turbine operations.

By incorporating pulleys into these different aspects of wind turbines, renewable energy systems can benefit from increased efficiency, improved maintenance procedures, and enhanced safety measures. Pulleys contribute to the overall performance and reliability of wind turbines, enabling the harnessing of wind energy for clean and sustainable electricity generation.

pulley

What are the different types of pulleys commonly used in industry?

Pulleys are widely used in various industries for different applications. Here are the different types of pulleys commonly used:

1. Fixed Pulleys: Fixed pulleys are attached to a stationary structure, such as a ceiling or wall. They change the direction of the force applied without providing any mechanical advantage. Fixed pulleys are often used in combination with other pulleys to create more complex systems.

2. Movable Pulleys: Movable pulleys are attached to the load being moved, and they move along with it. These pulleys provide mechanical advantage by reducing the effort required to lift the load. Movable pulleys are commonly used in systems such as block and tackle arrangements to lift heavy objects with less force.

3. Compound Pulleys: Compound pulleys consist of a combination of fixed and movable pulleys. They provide a greater mechanical advantage than a single pulley by distributing the load over multiple segments of the rope or belt. Compound pulley systems are often used in applications that require lifting extremely heavy loads.

4. Snatch Blocks: Snatch blocks are pulleys with a side plate that can be opened to insert or remove a rope or cable without threading it through the pulley. They are commonly used in rigging and towing applications to change the direction of force and create a mechanical advantage.

5. V-Belt Pulleys: V-belt pulleys have a V-shaped groove that matches the cross-section of V-belts. They are used in belt drive systems to transmit power between two shafts. V-belt pulleys are commonly found in applications such as industrial machinery, automotive engines, and HVAC systems.

6. Timing Pulleys: Timing pulleys have teeth that mesh with the teeth of a timing belt. They are used in synchronous drive systems to ensure accurate and synchronized power transmission. Timing pulleys are commonly used in applications such as robotics, printing presses, and CNC machines.

7. Rope Pulleys: Rope pulleys have a smooth surface designed to minimize friction and prevent wear on ropes. They are commonly used in applications where ropes are used for lifting or pulling, such as cranes, elevators, and material handling equipment.

8. Wire Rope Pulleys: Wire rope pulleys are specifically designed for use with wire ropes. They have grooves or pockets that accommodate the shape and size of wire ropes, ensuring secure grip and efficient force transmission. Wire rope pulleys are commonly used in applications such as cranes, winches, and hoists.

9. Idler Pulleys: Idler pulleys are used to guide and tension belts or ropes in a system. They do not transmit power but help maintain proper belt tension and alignment. Idler pulleys are commonly used in conveyor systems, automotive engines, and other belt-driven applications.

10. Sheave Pulleys: Sheave pulleys are large pulleys used in heavy-duty applications, such as crane systems and elevators. They are designed to handle high loads and provide smooth and reliable operation. Sheave pulleys often have multiple grooves to accommodate multiple ropes or belts.

These are some of the different types of pulleys commonly used in various industries. Each type has specific features and is selected based on the requirements of the application, such as load capacity, power transmission, and operational conditions.

China Hot selling High quality Timing Belt Guide Pulley Tensioner Pulley  for  CITROEN  XSARA Break (N2) 1.4 i   OEM  957726   manufacturer China Hot selling High quality Timing Belt Guide Pulley Tensioner Pulley  for  CITROEN  XSARA Break (N2) 1.4 i   OEM  957726   manufacturer
editor by CX